Human AI for Human Development

(Joint with Emmanuel Letouzé)

Program

Download

Presentations and Readings

  1. Aprendizaje estadistico
    Aplicación: Predicción y Causalidad
    Lecturas:
    • Statistical Modeling: The Two Cultures Leo Breiman. Statistical Science, Vol. 16, No. 3. (Aug., 2001), pp. 199-215.
    • Prediction Policy Problems. Jon Kleinberg. Jens Ludwig. Sendhil Mullainathan. Ziad Obermeyer. American Economic Review. Vol. 105, NO. 5, May 2015. (pp. 491-95).
    • Risk Adjustment Revisited using Machine Learning Techniques Proceeding Series of the Brazilian Society of Computational and Applied. Download
  2. Principales Técnicas Lineales, Principales Técnicas No Lineales, Selección y Validación de Modelos
    Aplicación: Discriminación Algorítmica
    Lecturas:
  3. Sesgo Algorítmico
    Aplicacion: Sesgos y Retroalimentacion Circular
    Lecturas:
    Discrimination in the Age of Algorithms
    Efficient allocation of law enforcement resources using predictive police patrolling
    To predict and serve?

  4. Causalidad Fundamentos I, Causalidad Fundamentos II
    Lecturas:
    An Introduction to Causal Inference
    Economics in the Age of Big Data

  5. Privacidad
    Lecturas:
    Calibrating Noise to Sensitivity in Private Data Analysis
    Collecting and Analyzing Multidimensional Data with Local Differential Privacy

References

Theory

[LS]: Luxburg, U., B. Scholkopf. 2008. Statistical Learning Theory: Models, Concepts and Results.
http://arxiv.org/abs/0810.4752

[HTF]: Hastie, T., Tibshirani, R. y J. Hastie. 2009. The Elements of Statistical Learning: Data Minning, Inference and Prediction. Segunda Edición. Springer
http://web.stanford.edu/~hastie/local.ftp/Springer/OLD/ESLII_print4.pdf

Applications