(Joint with Emmanuel Letouzé)
Program
Presentations and Readings
- Aprendizaje estadistico
Aplicación: Predicción y Causalidad
Lecturas:- Statistical Modeling: The Two Cultures Leo Breiman. Statistical Science, Vol. 16, No. 3. (Aug., 2001), pp. 199-215.
- Prediction Policy Problems. Jon Kleinberg. Jens Ludwig. Sendhil Mullainathan. Ziad Obermeyer. American Economic Review. Vol. 105, NO. 5, May 2015. (pp. 491-95).
- Risk Adjustment Revisited using Machine Learning Techniques Proceeding Series of the Brazilian Society of Computational and Applied. Download
- Principales Técnicas Lineales, Principales Técnicas No Lineales, Selección y Validación de Modelos
Aplicación: Discriminación Algorítmica
Lecturas:- Three learning principles from Learning From Data (2012) , Yaser S. Abu-Mostafa, Malik Magdon-Ismail, Hsuan-Tien Lin .
- Predictably Unequal? The Effects of Machine Learning on Credit Markets
- Sesgo Algorítmico
Aplicacion: Sesgos y Retroalimentacion Circular
Lecturas:
Discrimination in the Age of Algorithms
Efficient allocation of law enforcement resources using predictive police patrolling
To predict and serve? - Causalidad Fundamentos I, Causalidad Fundamentos II
Lecturas:
An Introduction to Causal Inference
Economics in the Age of Big Data - Privacidad
Lecturas:
Calibrating Noise to Sensitivity in Private Data Analysis
Collecting and Analyzing Multidimensional Data with Local Differential Privacy
References
Theory
[LS]: Luxburg, U., B. Scholkopf. 2008. Statistical Learning Theory: Models, Concepts and Results.
http://arxiv.org/abs/0810.4752
[HTF]: Hastie, T., Tibshirani, R. y J. Hastie. 2009. The Elements of Statistical Learning: Data Minning, Inference and Prediction. Segunda Edición. Springer
http://web.stanford.edu/~hastie/local.ftp/Springer/OLD/ESLII_print4.pdf
Applications